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ABSTRACT
This paper describes the software design patterns and vehicle inter-
faces that were employed to transition vehicle controllers from sim-
ulation environments to open-road field experiments. The approach
relies on a life cycle that utilizes model-based design and code gen-
eration, along with agile software development, and both software-
and hardware-in-the-loop testing, with additional safety margins.
Autonomous designs should consider the dynamics of mixed au-
tonomy in traffic to safely operate among humans. The software
that provides a vehicle’s behavior intelligence is often developed
through simulation, which may have a mismatch between dynam-
ics, or as a result of a reinforcement learning workflow, which may
be a black box with challenges to analyze. In each of these cases, it
is important to have research interfaces that provide strongly typed
data streams accessible to researchers who are not software experts
while continuing to satisfy safety and liveness constraints. This
paper describes how we design the hardware platform interfaces
and software design process for a mixed autonomy traffic experi-
ment with a leader-follower scenario. Controller synthesis for these
vehicles requires clearly articulated vehicle interfaces and software
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design patterns for successful onboard deployment. Testing strate-
gies for such controllers are also described before algorithms are
transitioned to full-scale field experiments with safety operators for
the vehicles. Testing strategies include software-in-the-loop simu-
lation testing, hardware-in-the-loop simulation, ghost-car testing,
and read-only testing in live traffic. With our approach, we were
not only able to validate our controller synthesized in scripts and
simulation, but also able to scale deployment to multiple vehicles.
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1 INTRODUCTION
Recent experiments on both closed-road tracks and open-roads
with other drivers have enabled mixed autonomy research to grow
in complexity while concurrently building confidence in design
processes and risk mitigation strategies that permit agile design
workflows to thrive.

The seminal mixed-autonomy Arizona Ring Road experiment,
conducted in 2016 [1], utilized a closed-road test track. To mitigate
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the risk of rear-end collision, the automated vehicle used the Fol-
lowerstopper, a classical controller that used a piecewise function
to modulate its speed depending on its relative distance and relative
velocity with respect to its human leader [2, 3].

The deployment of the Followerstopper safety controller used
a model-based design approach [4, 5], transforming the same soft-
ware that was used for data analysis (offline) to be deployed as
an executable in ROS through code generation. That same model-
based design workflow allowed researchers to conduct adaptive
cruise control on an open road in 2018 [6], concluding that existing
adaptive cruise control systems on many commercially-available
vehicles do not exhibit string stability criteria when operated. For
the purposes of this paper, we point out that this 2018 experiment
was made possible due to our ability to gather the same data, re-
formulate and generate the code, and re-run the experiment with
different parameters while staying confident in the safety of our
trained vehicle operators when operating near the boundary of
string instability.

More recently, in 2021, we conducted a mixed autonomy experi-
ment using 5-10 automated vehicles on an open road near Nashville
on I-24 [7]. The goal of that experiment was to enable our team to
plan to develop a larger experiment at a 10x scale or more. Devel-
oping and deploying controllers at such a scale requires rethinking
on how to design software and deploy it with efficiency.

In this work, we describe the life cycle of a mathematical con-
troller from its development through theory to its deployment on
the physical vehicle for field operational tests. The life cycle con-
sists of model development and refinement, training in the case of
the black-box model, testing in simulation, devising a strategy for
testing with the physical vehicle, and deployment on open roads.

The deployment process, in this case, significantly departs from
traditional software applications as vehicles are safety-critical, and
there is a potential for damage and loss of life. Vehicle applica-
tion engineers and controller designers can use the design pattern
discussed in this paper to design and deploy controller models me-
thodically. The paper presents the use case of field operational tests
conducted in Nashville in 2021 with a small set of vehicles with a
goal to scale to more than fifty vehicles. Two kinds of controllers
were deployed through this framework: (i) rule-based or classical
controllers, and (ii) black-box, or deep-learning-based controllers.

The rest of the paper is as follows: we first discuss issues around
controller development and deployment in Section 2. In Section 3,
we discuss some software design patterns for controller refinement,
simulation, testing, and deployment. In Section 4, we describe a case
study of developing a controller for traffic smoothing and energy
reduction.We conclude the paper with some thoughts and takeaway
messages in Section 5. Note that this paper mentions a number
of tools developed over the years and readers are encouraged to
reference various papers such as [8–12].

2 COMMON ISSUES AROUND THE
CONTROLLER DEVELOPMENT AND
DEPLOYMENT

A common task surrounding car-following controllers is the verifi-
cation of mathematical models to achieve their objective. However,
there are a few issues that are often overlooked:

• Vehicle dynamics: The algorithm development of a car-
following controller often simplifies the dynamics of the
vehicle, considering it as a mass or with simple Eulerian
kinematics or a bicycle model. While using a point mass is
reasonable for studying the dynamics of overall traffic from
a broader perspective, controllers designed with point mass
dynamics may exhibit instabilities (or other mismatches)
when deployed on a physical system.

• System delay: Car-following controllers often behave dif-
ferently with finite system delay and delay due to commu-
nication overhead within multiple computing modules or
electronic control units on board the vehicle. Moreover, con-
verting a continuous-time controller to a digital controller
during implementation requires selecting a sampling time,
controller gain, and other parameters.

• Vehicle interfaces: Disciplines interested in car-following
control range from computer science to applied mathematics
and physics. Many collaborators may be unfamiliar with ve-
hicle interfaces, and the availability of desired system states
such as speed, relative speed, speed of the leader car, etc.,
until near deployment or while in testing. This incentivizes
design processes that can enable modifications to the con-
troller after implementation for deployment.

In the above scenario, traditional CPS design practices may lead
to brittleness because the classic V pipeline involves designing,
validating, verifying, implementing, and testing, which results in
the need to redesign and carry out other steps when tests fail. The
goal of this paper is to describe how our test interfaces mitigate this
risk by requiring model-based approaches that can be re-validated
through regression and simulation analysis to confirm that unde-
sired behaviors have been eliminated before redeployment.

2.1 An example of the disconnect between
theory and the practice

Early into the mixed autonomy research, Cui et al. [13] developed
a second-order car-following model with feedback for stabilizing
traffic flow in a ring road of the form in Equation (1).

¥𝑥 = 𝑓 ( ¤𝑥 𝑗 , ¤𝑥 𝑗+1, 𝑥 𝑗 , 𝑥 𝑗+1) (1)

In Equation (1), 𝑥 𝑗 , 𝑥 𝑗+1 are positions of the follower and the leader
vehicles in the traffic stream, and ¤𝑥 𝑗 , and ¤𝑥 𝑗+1 are their speed. The
above equation provided theoretical benefits, but our testbed, both
in simulation and on the physical vehicle [4], had limitations. The
testbed lacked the ability to instantaneously command acceleration
and did not have velocity as an available input without filtering
relative distance, as done in [14]. The situation led to a redesign
of the car-following controller in conjunction with testing on the
testbed in an iterative and agile manner.

3 DESIGN PATTERN FOR CONTROLLER
SYNTHESIS AND DEPLOYMENT

Software design pattern specifies a life-cycle of an engineering solu-
tion from math and paper to a digital computer for production that
can be repeated over and over again [15, 16]. Software architects
specify design practices that identify rules and emphasize abstrac-
tions, reusability, and collaborative approach for multi-disciplinary
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teams. Next, we describe the development life cycle we took for
developing novel car-following controllers.

3.1 Model development
The controller development life-cycle starts with mathematical
equations in the form of differential equations, piecewise functions,
or state-space models. At this point, mathematicians and algorithm
designers are involved in choosing the form of a controller and veri-
fying its properties through scripting in either Python or MATLAB.
However, at this stage, consideration for vehicle dynamics is often
absent, or the dynamics are merely considered as point-mass.

3.2 Model-based Design
Once an initial draft of the car-following controller is ready, vehicle
interfaces are required to be agreed upon that can be used for the
abstraction of the vehicle plant as well as the controller model. This
requires clearly articulating what inputs are expected to and from
the plant as well as the controller and their data types. Then, equa-
tions are coded along with abstracted interfaces using pre-defined
libraries such as one present in Simulink or created using domain-
specific modeling languages such as WebGME [17, 18]. Stand-alone
coding artifacts such as a ROS (Robot Operating System) package
are generated that can be executed in the simulation and/or with
physical hardware. ROS also helped fill the gap between sim and
real by introducing real-life system delay, non-homogenous data
types, and non-uniform sample frequency among various signals
representing states of the vehicle and control commands.

3.3 Software-in-the-loop Simulation (SWIL)
Once the implementation is ready for execution, it is tested in
simulation. At this stage, simulation involves modeling a scenario,
the dynamics of vehicles, and any communication paradigms to
replicate real-life situations such as fixed sample time with slight
variations, finite delay, and varied sample time among different
input-output signals. The choice of sample time plays an important
role as converting a continuous-time domain controller to a digital
domain without retuning controller parameters may make the plant
output unstable. This situation can be easily replicated using a
classic example of an inverted pendulum on a cart. This step, along
with all the previous ones, is an iterative process where data or logs
from the simulation are recorded and analyzed to meet expectations
and ensure the safety properties of the controller.

3.4 Hardware-in-the-loop Simulation (HWIL)
After validation with SWIL simulation, the HWIL approach is taken
where a physical platform such as an actual vehicle is used in con-
jugation with some components of the simulation. In this scenario,
the actual car may be made to follow a virtual vehicle, sensor data
may come from the simulation, etc. Such a strategy is an elegant
solution for safety reasons as even if there is a collision or unsafe
behavior, it doesn’t happen with the real vehicle.

3.5 Additional Discussion
There are other considerations in the controller design pattern,
such as compatibility of the controller model with both simulation
and physical hardware, to avoid rewriting any portion of the code.

Building such compatibility requires a sufficient level of abstraction
supported by various parameters.

In addition to customized software practices, we also adopted
standard practices of continuous development and continuous inte-
gration and managed our issues through a GitHub Board for issue
tracking among a large team of researchers. Each controller devel-
opment stage was versioned and marked with commit hashes for
automatic pulling and deployment on physical vehicles to avoid
overwriting approved changes.

4 CASE STUDY OF ENERGY-REDUCING &
TRAFFIC-SMOOTHING CONTROLLER

The software design pattern and life cycle for a classical controller
deployed as a part of a larger CIRCLES experiment are discussed
in this section. The CIRCLES project utilizes ROS for abstraction,
vehicle interface, and implementation, while Gazebo is used for sim-
ulating 3D rigid-body vehicle dynamics. A high-level schematic of
the main objective of the project is illustrated in Figure 1. Referring
to Figure 1, an energy-reducing and traffic-smoothing controller is
defined as

𝑢 (𝑡) = 𝑓 (𝑣, 𝑣lead, 𝑥rel, 𝑣rel, 𝑎;Θ) (2)

where 𝑣 is the driving speed of the vehicle to be controlled, called
ego vehicle, 𝑣lead is the measured speed of the leader vehicle, 𝑥rel is
the headway distance between ego vehicle and its leader, 𝑣rel is the
relative speed of the leader with respect to the ego vehicle, and 𝑎 is
the acceleration of the ego vehicle. 𝑢 (𝑡) is the reference command
which may be an acceleration command or velocity command.
Energy-reducing controller is parameterized by Θ. Further, the
safety controller is defined as

𝑤 (𝑡) = 𝑓 (𝑣, 𝑣lead, 𝑥rel, 𝑣rel, 𝑎,𝑢;Φ) (3)

where𝑤 is the control command. The safety controller is parame-
terized by Φ. Parameters Θ and Φ are decided through a series of
tests in SWIL simulation, HWIL simulation, and testing controller
in live traffic with read-only mode. Subsequent paragraphs describe
these strategies.

For classical controllers, it is possible to abstract the energy-
reducing controller and safety controller into one block. However,
if the initial prototype of the targeted energy-reducing controller is
unsafe, then overall operation can be made safe using a supervisory
controller such as Followerstopper [2, 19]. For compatibility and
data exchange between various components developed by indepen-
dent subteams, we specified vehicle interfaces with respective ROS
topic names, their data types, and relevant signals, as shown in
Table 1.

4.1 Classical Controller
For classical controllers, we implemented a modified version of
Micromodel controller [20] in Simulink that, along with the ROS
toolbox allows code generation into a standalone ROS node for
time-triggered execution1. We use ROS for execution through a
roslaunch file for SWIL simulation that executes the leader-follower
scenario for collision avoidance and interface checking. The roslaunch
1We do not use the real-time operating system, but rather depend on ROS and its
time-triggered behavior through Linux to emulate this behavior.
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Energy-reducing and
Traffic-smoothing

Controller

Safety
Controller

Vehicle
(and any other low-

level controller)

LeaderEgo

Figure 1: A high-level schematic of the main objective of an energy-reducing and traffic-smoothing controller for car-following strategy in a
mixed-autonomy traffic experiment. The controller is designed for the longitudinal movement of the ego vehicle to follow its leader which
may be a human-driven vehicle.

Data Type Data Topic Name Data Type Signal

Input Ego’s driving velocity (m/s) /vel std_msgs/Float64 data

Input Space gap between ego and leader (m) (Toyota-only) /lead_dist std_msgs/Float64 data

Input Relative speed of leader (m/s) (Toyota-only) /rel_vel std_msgs/Float64 data

Input ACC Set Point (mph) /acc/set_speed std_msgs/Int16 data

Input ACC State (encoded integers)
off/disabled/enabled/faulted

/acc/cruise_state_int
/acc/cruise_state

std_msgs/Int16
std_msgs/String

data
data

Input ACC Vehicle Ahead (0/1) /acc/mini_car std_msgs/Int16 data

Input ACC distance setting (1/2/3) /acc/set_distance std_msgs/Int16 data

Input ACC button press states (Nissan-only)
none/resume/set/distance/cancel/system_toggle

/acc/acc_btns
/acc/acc_btns_int

std_msgs/String
std_msgs/Int16

data

Estimated Estimated Velocity of the Leader (performed in onnx2ros package) /v_ref geometry_msgs/Twist linear.y

Output Predicted Acceleration /v_ref geometry_msgs/Twist linear.z

Output Predicted Speed from RL Acting as v-des or reference speed for Followerstopper /v_ref geometry_msgs/Twist linear.x

Output Commanded Velocity from Followerstopper to the ego car /cmd_vel geometry_msgs/Twist linear.x

Output Regions of Followerstopper /region std_msgs/UInt8 data

Table 1: Vehicle interfaces with various ROS topic types, their data types, and signal components required for data exchange between various
components.

file allows for the parametrization of the controller at runtime and
avoids copy/paste or cloning errors during the controller design or
code regeneration.

A UML class diagram showing the relationships between var-
ious entities abstracted as classes for SWIL simulation is shown
in Figure 2. In a leader-follower scenario, SWIL simulation has

one leader vehicle controlled in an open-loop manner using real-
world trajectory data. The subsequent vehicles are controlled using
energy-reducing controllers such as MicromodelController. A SWIL
leader-follower scenario is shown in Figure 3.

After approving the SWIL simulation test, we move to the HWIL
simulation test. In the HWIL simulation test, a real vehicle is made



Approaches for Synthesis and Deployment of Controller Models
on Automated Vehicles for Car-following in Mixed Autonomy DI-CPS ’23, May 9, 2023, San Antonio, TX, USA

BaseController

MicromodelController

roslaunch

+ params

SafetyController

Vehicle

2.. *

rosnode

GazeboSimulator

1.. * 1.. *

TrajectoryData

Figure 2: A UML class diagram showing the relationship between
various entities for the purpose of SWIL simulation for testing a
classical controller.

Leader with trajectory data

Ego car with energy reducing 
controller

Figure 3: A leader-follower scenario in SWIL scenario with a leader
being controlled using real-world trajectory data while ego vehicle
follows the leader, controlled by a car-following controller.

to follow a ghost car. To imitate the ghost car, we simulate the
relative distance and velocity of the ghost leader by playing back
real-world driving data. Such a strategy is safer because it allows
us to verify potential collisions without actually damaging the real
vehicle. Once the ghost car scenario passes, we test the controller by
following a real vehicle. However, there are differences between the
SWIL test and the HWIL test. The HWIL test involves interacting
with a low-level controller that requires commands in the form
of CAN bus messages. To facilitate sending commands to the car
in CAN bus message form, we use the CAN-to-ROS package [10]
which has the ability to convert CAN busmessages to ROSmessages
or vice versa. CAN busmessage commands are then relayed through
the Libpanda library to control the vehicle [8] using comma.ai Panda
devices.

Another novel strategy we use for testing our controller in the
car is read-only testing, where the controller is deployed and run
on the vehicle, but the command doesn’t eventually operate the
vehicle. Instead, it is intercepted before it reaches Libpanda for
control, and we only observe the output. In this case, the vehicle
command comes from the vehicle’s stock ACC. This strategy is
shown in Figure 4.

4.2 Deep-Learning Trained Controller
In contrast to classical controllers, deep-learning-based controllers
are data-driven; they require a huge amount of data sets to train

vehicle

/cmd_accel

velocity_controller

/cmd_accel

/cmd_vel

vehicle

/cmd_accel

velocity_controller

/cmd_accel

/cmd_vel

/cmd_accel_null

From the car’s 
Stock ACC

6

(a)

(b)

Figure 4: Read-only testing strategy in live traffic. The strategy
ensures that we can observe the data for validity and any unsafe
behavior. (a) Shows a scenario where directly testing the controller
in live trafficmay be dangerous if parameters are not tuned correctly.
(b) Shows a scenario of read-only testing where the controller
command is intercepted and replaced by the command from the
vehicle’s stock ACC.

the algorithm. In our case, we employed deep reinforcement learn-
ing (deep RL) to create a car-following strategy with the objective
of reducing energy consumption while achieving uniform traffic
flow. We used a modified version of the deep-RL controller men-
tioned in [11] for the mixed-autonomy traffic experiment. In this
case, the objective of the deep-RL controller is to reduce fuel con-
seumption over a given time horizon. The training resulted in a
black-box model that can be used for real-time prediction. To en-
sure interoperability with ROS, we transformed the model trained
using PyTorch into ONNX2. Finally, we created the ONNX2ROS
package3, which is a ROS package that enables real-time predic-
tion of control commands based on input states using a black-box
trained deep-RL model. Figure 5 shows a UML class diagram that
displays the various entities involved in the SWIL simulation of a
deep-RL-based controller.

Results from regression testing under a wider variety of traffic
conditions, both in SWIL simulation, HWIL simulation, and live
traffic allowed us to tune parameters for both classical and deep-RL-
based controllers. After successfully passing the regression testing,
the experiment was conducted at a scale.

5 CONCLUSION & DISCUSSIONS
In this paper, we describe the software design pattern and lifecycle
for taking a controller equation from math to hardware deployment
for field testing on a physical vehicle. We employed a model-based
design for faster prototyping, SWIL simulation, HWIL simulation,
and various other strategies for controller tuning and safety checks
before conducting the experiment at scale. Our approaches allowed
2https://github.com/onnx/onnx
3https://github.com/CIRCLES-consortium/algos-stack/tree/master/onnx2ros
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ONNXmodel

ONNX2ROS

roslaunch

+ params

SafetyController

Vehicle

2.. *

rosnode

GazeboSimulator

1.. * 1.. *

TrajectoryData

Figure 5: A UML class diagram showing the relationship between
various entities for the purpose of SWIL simulation for testing a
black-box deep-RL controller.

several dozen iterations per week for refining a controller’s pa-
rameter selections and tuning, which with traditional software
engineering practices, may take months.
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