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Abstract: The use of pre-shared entanglement in entanglement-assisted communication offers a
superior alternative to classical communication, especially in the photon-starved regime and highly
noisy environments. In this paper, we analyze the performance of several low-complexity receivers
that use optical parametric amplifiers. The simulations demonstrate that receivers employing
an entanglement-assisted scheme with phase-shift-keying modulation can outperform classical
capacities. We present a 2x2 optical hybrid receiver for entanglement-assisted communication
and show that it has a roughly 10% lower error probability compared to previously proposed
optical parametric amplifier-based receivers for more than 10 modes. However, the capacity of
the optical parametric amplifier-based receiver exceeds the Holevo capacity and the capacities of
the optical phase conjugate receiver and 2x2 optical hybrid receiver in the case of a single mode.
The numerical findings indicate that surpassing the Holevo and Homodyne capacities does not
require a large number of signal-idler modes. Furthermore, we find that using unequal priors for
BPSK provides roughly three times the information rate advantage over equal priors.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum Information Processing (QIP) has seen tremendous progress in recent decades, with
multiple research directions exploring quantum sensing, covert communication, quantum
cryptography, and more. A quantum channel is used to transfer quantum information from one
party (known as Alice) to another party (known as Bob). In the case of a perfect channel, the
quantum information is transferred intact, but if the channel is noisy, the quantum information
undergoes some changes. Quantum channels can also be used to transmit classical information.
Additionally, if the channel is noisy within certain limitations, the quantum channel can be
used to share entanglement between Alice and Bob. The use of pre-shared entanglement
can enhance classical capacity and protect against an adversary, commonly referred to as Eve
[1–5]. Recent experiments have shown that even in entanglement-breaking scenarios, the rate of
entanglement-assisted (EA) communication can be much higher than communication without
entanglement [6,7]. The ratio CEA

C , where CEA is the entanglement-assisted capacity and C
is the Holevo-Schumacher-Westmoreland (HSW) capacity in the classical regime, diverges
logarithmically with the inverse of the signal power over a lossy and noisy bosonic channel [2].

Recent efforts have been made to design receivers for EA communication, where authors
have utilized the Gaussian approximation of the cumulative distribution function to calculate
the Bit Error Rate (BER) [4,5,8,9]. The previously proposed receiver design is limited to a
demonstration using Binary Phase-Shift Keying (BPSK) with repetition coding over more than
106 bosonic modes that occupy the entire C-band and a portion of the L-band.
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In this work [31], we analyze the receiver design for entanglement-assisted (EA) communication
using Optical Parametric Amplifiers (OPAs) introduced in [9] and expand upon previous results
to determine the optimality of the receiver design. We show that EA communication does not
need to occupy the entire C-band. Additionally, we analyze a 2x2 optical hybrid-based receiver
for EA communication that is suitable for implementation in integrated optics and quantum
nanophotonics. In our scheme, optical phase conjugation is performed on the transmitter side
when signal photons are brighter, rather than on the receiver side where the signal photons are
buried in noise and highly attenuated. A comparison of phase conjugation on the transmitted
side versus the receiver side can be found in [11].

We further propose an optimized hypothesis testing scheme and demonstrate numerically
that the optimized receiver design provides a superior communication capacity compared to
capacity without entanglement assistance. When using the BPSK modulation format to represent
digital information, we find that non-equal priors perform at least three times better in terms of
information rate compared to an equal prior encoding scheme. The development presented in
this work is an extension of [10].

The rest of the paper is organized as follows. In Section 2, we provide a brief review of
entanglement-assistance with mathematical formalism necessary for the rest of the paper. In
Section 3, we present an overview of the receiver design schemes for entanglement-assisted
communication, including the optical parametric amplifier-based receiver design with threshold
detection, the optical phase conjugation receiver, and the 2x2 optical hybrid-based joint receiver
proposed in previous work [9]. These receiver designs are then evaluated in Section 4.

1.1. Notations used in the paper

|·⟩ is used for ket-notation in quantum mechanics, equivalent to a vector notation in linear
algebra. The Hermitian conjugate of the vector, ⟨·|, is referred to as bra-notation. The scalar
product of two vectors |ψ1⟩ and |ψ2⟩ is denoted by ⟨ψ1 | |ψ2⟩. Additionally, the ket-notation |α⟩
represents a coherent state of amplitude α. The imaginary unit or a complex number

√
−1 is

represented by j. Random variables X and Y denote the input and detected states, respectively.
The measurement operator is represented by Π. Shannon’s entropy is denoted by H(·) and mutual
information is represented by I(·, ·). Probabilities are written as p, while conditional probabilities
are represented as pY |X and conditioned on Y given X. The binomial coefficient is represented

by ⎛⎜⎝
M

N
⎞⎟⎠. The tensor product is represented by ⊗ and the cumulative distribution function of a

statistical distribution is represented by F .

2. Entanglement assisted classical communication concept

Quantum entanglement is a phenomenon where two particles are strongly correlated, such that
the state of one particle immediately provides information about the state of the other particle,
no matter how far apart they are. These particles, such as photons or electrons, are individual
systems, but they remain connected even when separated by vast distances, forming a composite
system [12–14]. As an example, given two basis vectors {|0⟩A, |1⟩A} in Hilbert space HA and
{|0⟩B, |1⟩B} in Hilbert space HB, then the following is an entangled state:

1
√

2
(|0⟩A ⊗ |1⟩B − |1⟩A ⊗ |0⟩B) (1)

When a composite system is in the state (1), it is impossible to attribute either system A or B a
definite pure state. Although the von Neumann entropy of the whole state is zero, the entropy of
the subsystem is greater than zero, indicating the systems are entangled.
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Compared to classical communication, entanglement enhances communication by increasing
the number of messages that can be sent perfectly over the channels, resulting in higher one-shot
zero-error capacity and increased security [15]. However, [15]doesn’t explain what kind of
measurement device and receiver scheme the experimentalists used. Theoretical proofs and
discussions of entanglement-assisted communication can be found in [16–18]. A laboratory
experiment demonstrating the superiority of entanglement-assisted communication was recently
conducted in [7].

In entanglement-assisted classical communication, entangled states can be distributed through
either optical fibers or satellites and stored in quantum memories. The classical data is transmitted
by Alice using the signal photon of the entangled pair, which is affected by noise and loss in
the quantum channel. On the receiver side, Bob uses the idler photon of the entangled pair
to determine what was transmitted by employing an optimal quantum receiver. The overall
design is illustrated in Fig. 1. Error correction can be applied to the quantum states to restore the
transmitted information and mitigate the effects of decoherence.

Fig. 1. An illustration showing the concept of EA communication. EA-assisted communi-
cation is enabled by either fiber-optic-based distribution of entanglement or entanglement
distribution through satellites. The information is transmitted through a lossy and noisy
Bosonic channel.

3. Receiver design for EA communication

In entanglement-assisted communication, two-mode Gaussian states are generated through
spontaneous parametric down-conversion (SPDC) of entangled-photon pairs [19,20]. The SPDC
source is a broadband source with a number of modes M = TmW, where W is the phase-matching
bandwidth and Tm is the measurement interval and generates M independent pairs of signal-idler
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photons in space and time denoted by their annihilation operators â(m)
s , â(m)

i , with m ∈ [1, M].
These pairs are prepared in identical entangled two-mode squeezed vacuum (TMSV) states,
which can be represented in a Fock state basis as in Eq. (2)

|ψ⟩si =

∞∑︂
n=0

√︄
Nn

s

(Ns + 1)n+1 |n⟩s |n⟩i (2)

where Ns is the mean photon number in the signal mode. The mean photon number for the idler
mode is Ni = Ns [8,21]. TMSV belongs to a class of Gaussian states, where an M-mode Gaussian
state ρ̂ consisting of modes â(m), m ∈ [1, M] is characterized by the mean and variance of their
respective quadrature field operators such that â(m) = p̂(m) + jq̂(m). The covariance matrix for a
TMSV state is given by

ΛTMSV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2Ns + 1 0 C 0

0 2Ns + 1 0 −C

C 0 2Ns + 1 0

0 −C 0 2Ns + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
(2Ns + 1)I CZ

CZ (2Ns + 1)I

⎤⎥⎥⎥⎥⎦
(3)

where C = 2
√︁

Ns(Ns + 1), I and Z are 2 × 2 Pauli matrices. Other two Pauli matrices are X and
Y [32,22].

If we consider the Phase-Shift Keying (PSK) modulation scheme for communication, then
mathematically, we can use the unitary operator Ûθ = ejθâ†â to denote the rotation of the base
annihilation operator â. In transmitting information using entangled photons generated from
SPDC, the signal photon of the signal-idler pair is used while the idler is pre-shared before
transmission occurs. In order to transmit information, Alice modulates the signal âs′ using
a phase modulator to apply a rotation of θ. The signal then passes through a thermal, lossy
Bosonic quantum channel. The received photon mode (after passing through the communication
channel) at Bob’s end is denoted by âR = âR′ejθ where âR′ is the base photon mode at the
receiving end. Bob uses the undisturbed idler part of the pre-shared entangled photon pair and
an optimal quantum detector to perform hypothesis testing and determine which symbol was
transmitted. For simplicity, we will drop the mode notation from the annihilation operator. Under
the phase-encoding scheme, the covariance matrix of the return-idler pair âR, âI is given by⎡⎢⎢⎢⎢⎣

(2NR + 1)I CηRe[ejθ (Z − jX)]

CηRe[ejθ (Z − jX)] (2NI + 1)I

⎤⎥⎥⎥⎥⎦ (4)

where NR = ηNs + NB, Cη = 2
√︁
ηNs(Ns + 1), η is the transmittivity of the Bosonic channel, and

NB is the mean photon number of the thermal mode. In the case of a pre-shared entangled state,
the idler is assumed to be undisturbed as it has been shared through fiber optics or satellite and is
stored in quantum memory. In such a case, attenuation experienced by the idler is negligible.
Hence, at the receiver side, the idler mean photon number NI = Ni = Ns. As the signal mode
passes through a thermal lossy bosonic channel, the signal mode is altered and referred to as the
return mode on the receiver side with mean photon number NR.
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3.1. OPA-based receiver with threshold detection

A joint detection receiver for state discrimination of EA communication consists of an optical
parametric amplifier (OPA). On the receiver side, an optical parametric amplifier (OPA) is used
to combine the return-idler pair, as shown in Fig. 2. The return and idler modes are evolved as
given by Heisenberg’s picture [23]:

û =
√

GâR +
√

G − 1â†I
v̂ =

√
GâI +

√
G − 1â†R

(5)

where G is the gain of the OPA, such that G = 1 + ϵ and ϵ<<1. OPA receiver can be used to
combine and amplify the return-idler pair using a strong local pump. This gives rise to Eq. (5).
At the output ports, a photodetector is used for photon counting, and a threshold detection rule is
applied to make state discrimination. We further assume an ideal OPA, where the gain G is fixed.

Photon Count

Fig. 2. Operating Principle of Optical Parametric Amplifier (OPA): At the receiver end,
parametric amplification is applied to the return-idler pair with gain G. Error probability of
discrimination is higher at û, hence the photon detection is made v̂.

The photodetector outputs are designated as û and v̂ at two ports, referred to as the return and
idler outputs, respectively. For each output, the mean photon number is given by the expectation
⟨û†û⟩ or ⟨v̂†v̂⟩, depending on whether threshold detection is made at the signal output port or
idler output port. The photocurrent operators and their expectations are given by Eq. (6) and
Eq. (7).

N1(θ) = ⟨û†û⟩ = G(ηNs + NB) + (G − 1)(1 + Ns) + 2 cos θ
√︁

G(G − 1)
√︁
ηNs(Ns + 1) (6)

N2(θ) = ⟨v̂†v̂⟩ = GNs + (G − 1)(1 + ηNs + NB) + 2 cos θ
√︁

G(G − 1)
√︁
ηNs(Ns + 1) (7)

The derivation is provided in Appendix 8.
For practical communication, consider that information is encoded using repetition codewords

that employ binary phase-shift keying (BPSK) modulation with phases θ ∈ 0, π. Decoding BPSK
can be modeled as hypothesis testing: if hypothesis H0 is true, then the BPSK symbol with θ = 0
was transmitted, and if hypothesis H1 is true, then the symbol with θ = π was transmitted. In this
paper, we do not discuss optimal encoding, which is beyond the scope of this paper. However,
BPSK is a suitable choice for weak signals, as it is power-efficient [24].

To allow for efficient error correction, repeated PSK codewords consisting of M signal-idler
pairs are used in EA communication [4]. In a joint-detection scheme, the receiver mixes all M
received modes and counts the total number of photons at the output ports. The joint detection
state in this case becomes an M-fold tensor product ρ⊗M , with identical zero-mean thermal states,
and the per-mode mean photon number is given by N1(θ) or N2(θ), depending on which output
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port of the OPA we use. An optimum joint measurement for state discrimination requires photon
counting at an output port and thus deciding between two hypotheses using the total photon
number N over M modes [8,25]. Under such a scenario, the probability mass function (pmf) is

negative binomial with mean MN(θ) and standard deviation σ(θ) =
√︂

MN(θ)(N(θ) + 1), given
by [8,25]:

POPA(n|θ; M, i) = ⎛⎜⎝
n +M − 1

n
⎞⎟⎠
(︃

Ni(θ)

1+Ni(θ)

)︃n (︃
1

1+Ni(θ)

)︃M
(8)

where i ∈ 1, 2, and ⎛⎜⎝
n +M − 1

n
⎞⎟⎠ is the binomial coefficient.

Equation (8) can be approximated as a Gaussian distribution with mean MNi(θ) and standard

deviation σ(θ) =
√︂

MNi(θ)(Ni(θ) + 1) for sufficiently large M (see Appendix 7). At the detector
end, we use threshold detection and decide in favor of H0 if the total number of photons detected
is N>Nth(θ), otherwise we choose H1 for N ≤ Nth(θ), where Nth(θ) is the threshold number of
photons, which is a function of the phase θ. A suitable value for the threshold number of photons
is chosen according to the scheme described later in Section 4.

3.2. Optical phase conjugation receiver with threshold detection

OPA can also be used differently, where the return âR mode interacts with the vacuum mode âv
to produce

√
Gâv +

√
G − 1â†R, which becomes âc =

√
2âv + â†R for G = 2. By mixing the idler

with âc using a 50-50 beamsplitter, we get two modes
1
√

2
(âc ± âI). The outputs from the two

arms are fed to a balanced detector, and their difference is measured as a photocurrent. We call
this the Optical Phase Conjugate Receiver (OPC receiver). Consider the schematic of the OPC
receiver shown in Fig. 3.

Optical

Parametric

Amplifier

G = 2

+

-
Photodetector

Photodetector

Fig. 3. Operating Principle of Optical Phase Conjugate (OPC) receiver: signal interacts
with the vacuum followed by mixing with idler using 50-50 beamsplitter and a balanced
detection is applied using photodetectors.

For the case of BPSK, the mean photon operators of two output arms of beamsplitters are
given by

â†A/BâA/B =
1
2

[︃
(G − 1)âRâ†R±

√
G − 1âRâI ±

√
G − 1â†I â†R+â†I âI

]︃
with + sign for arm A and - sign for arm B.

(9)

In Eq. (9), âv term doesn’t appear as it denotes the vacuum mode.
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We adopt a joint-detection scheme similar to the one adopted for the OPA receiver discussed in
Section 3.1, containing M modes for error correction. The difference in the mean photon number
detected at the two photodetectors of the OPC is converted to a photocurrent with a photocurrent
operator k̂ given by Eq. (10), setting G = 2.

k̂ = â†AâA − â†BâB =
√

G − 1âRâI +
√

G − 1â†I â†R
NOPC(θ) = ⟨k̂⟩ = 2 cos θ

√︁
ηNs(Ns + 1)

as, âR = âR′ejθ ,

⟨âR′ âI⟩ =
√︁
ηNs(Ns + 1), âRâ†R=â†RâR + I

(10)

The variance σ2
OPC is given by Eq. (11), setting G = 2.

σ2
OPC(θ) = ⟨k̂2⟩ − ⟨k̂⟩2

= Ns(ηNs + NB + 1) + (Ns + 1)(ηNs + NB + 1)

− 2(ηNs(Ns + 1)) cos 2θ − 4(ηNs(Ns + 1)) cos2 θ

(11)

At the detector end, the decision scheme uses threshold detection, similar to the OPA-based
receiver design discussed in Section 3.1.

3.3. 2x2 optical hybrid-based joint receiver with threshold detection

In this section, we describe a practical receiver design using a 2x2 optical hybrid for EA
communication. An optical hybrid-based joint detection scheme is suitable for EA communication
as it can be directly implemented in integrated optics and quantum nanophotonics. For a two-
dimensional constellation, a 2x2 optical hybrid receiver can be used, as shown in Fig. 4. A
detailed discussion of the optical hybrid receiver design can be found in [9], where Gaussian
modulation has also been discussed. The scattering matrix S of the 2x2 optical hybrid is
described by Eq. (12)

S =

⎡⎢⎢⎢⎢⎣
ejφ1

√
1 − κ

√
1 − κ

√
1 − κ ejφ2

√
κ

⎤⎥⎥⎥⎥⎦ (12)

where κ is the power-splitting ratio of Y-junction in a 2x2 optical hybrid; and ϕ1, and ϕ2 are phase
shift parameters [26]. Return and idler at the receiver are transformed based on the scattering
matrix given in Eq. (13). ⎡⎢⎢⎢⎢⎣

ÂR

ÂI

⎤⎥⎥⎥⎥⎦ = S

⎡⎢⎢⎢⎢⎣
âR

âI

⎤⎥⎥⎥⎥⎦ . (13)

We consider equal power splitting set by κ = 0.5 and write the scattering matrix as⎡⎢⎢⎢⎢⎣
ÂR

ÂI

⎤⎥⎥⎥⎥⎦ =
1
√

2

⎡⎢⎢⎢⎢⎣
ejφ1 1

1 ejφ2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
âR

âI

⎤⎥⎥⎥⎥⎦ (14)

For BPSK, âR = âR′ejθ with θ ∈ {0, π}. The photocurrent operator is given by

îOH =
1
2
e−jθ (e−jφ1 − ejφ2 )â†R′ âI +

1
2
ejθ (ejφ1 − e−jφ2 )â†I âR′ (15)

The expectation of photocurrent is given by

NOH = ⟨îOH⟩ =
1
2
e−jθ

√︁
ηNs(Ns + 1)(e−jφ1 − ejφ2 ) +

1
2
ejθ

√︁
ηNs(Ns + 1)(ejφ1 − e−jφ2 ) (16)

In this paper, we consider a special case of 2x2 optical hybrid receiver where ϕ1 = 0 and
ϕ2 = π, for which, NOH = 2

√︁
ηNs(Ns + 1) cos θ. The variance of the photocurrent operator is
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given by
σ2

OH = ⟨î2OH⟩ − ⟨îOH⟩
2

=
1
4
|ejφ1 − e−jφ2 |2(2NRNI + NR + NI)

+
ηNs(Ns + 1)

4

[︃(︃
⟨e−2jθ⟩ − e−2jθ

)︃
(e−jφ1 − ejφ2 )2

]︃
+
ηNs(Ns + 1)

4

[︃(︃
⟨e2jθ⟩ − e2jθ

)︃
(ejφ1 − e−jφ2 )2

]︃
−
ηNs(Ns + 1)

2
e−jθejθ |ejφ1 − e−jφ2 |2

(17)

For equal prior BPSK symbols, ⟨e±2jθ⟩ = (e±2j ·0 + e±2j ·π)/2 = 1. For non-equal prior symbols
with priors p0 and p1, ⟨e±2jθ⟩ is calculated as p0e±2j ·0 + p1e±2j ·π which is still 1. Further,
regardless of phase value θ ∈ {0, π} for BPSK symbols, e±2jθ = cos 2θ. Putting these values in
Eq. (17), and considering special case of ϕ1 = 0 and ϕ2 = π, the variance for BPSK is

σ2
OH(θ) = (2NRNI + NR + NI) + 2ηNs(Ns + 1)(1 − cos 2θ) − 2ηNs(Ns + 1) (18)

where NR = ηNs + NB and NI = Ns. Similar to OPA and OPC receiver design, the decision
scheme uses threshold detection for state discrimination. Since the target of this paper is a
highly noisy and lossy environment, we choose NB = 1, Ns = 0.01, η = 0.01, and G = 1.1 as a
representative of such a condition.

2x2 Optical Hybrid

Balanced

Detector

Fig. 4. Receiver configuration of a 2 × 2 optical hybrid-based joint balanced detection
receiver.

4. Evaluation of entanglement-assisted communication receivers

4.1. Error probability calculation

The probability of error of state discrimination for the case of BPSK using OPA is given by

PE = p0POPA

(︃
n<Nth |θ = 0; M, i

)︃
+ p1

[︃
1 − POPA

(︃
n<Nth |θ = π; M, i

)︃]︃
. (19)

An optimum value of Nth can be found by equating individual error term in Eq. (19) which, for

case of symbols with equal priors gives us Nth(θ) =
M(σ(π)N(0) + σ(0)N(π))

(σ(π) + σ(0))
. Derivation of

the optimum threshold for OPA is provided in Appendix 7 that uses Gaussian approximation.
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However, for unequal priors, the optimum threshold Nth is the one that satisfies the condition

p0POPA

(︃
n<Nth |θ = 0; M, i

)︃
= p1

[︃
1 − POPA

(︃
n<Nth |θ = π; M, i

)︃]︃
. (20)

We solve Eq. (20) for Nth using grid search procedure and plug into Eq. (19) to calculate the
error probability. In such a case, there is no closed-form solution.

The joint detection can be made either at the idler output port or the signal output port. The
error probability of discrimination is higher at the return port compared to detection made at the
idler port, as shown in Fig. 5(b). As a result, our further analysis focuses solely on making joint
detection at the idler port and we drop the index i from the probability notation moving forward.
We find that for the case of non-equal priors, the mean threshold photon number Nth for BPSK
discrimination is higher for any detection made at the return output port than at the idler output
port (see Fig. 6). Note that even though the error probability PE in Eq. (19) is a convex function
of Nth, it is a monotonic function of the prior p0, as shown in Fig. 7. Hence, there does not exist
an optimum prior that minimizes the probability of error for state discrimination.

For the OPC receiver, we calculate the error probability by taking a Gaussian approximation
of photodetection statistics similar to Eq. (19). This is because we measure the difference of
photocurrent obtained at the two arms of the beamsplitter at the detection side (as shown in
Fig. 3). The Gaussian approximation yields the probability of error formula given in Eq. (21).

PE = p0FOPC

(︃
Nth, M ·NOPC(0),

√
M ·σOPC(0)

)︃
+p1

[︃
1−FOPC

(︃
Nth, M ·NOPC(π),

√
M ·σOPC(π)

)︃]︃
(21)

In Eq. (21), NOPC(θ) and σOPC are given by Eqs. (10) and (11) respectively. FOPC is cumulative
distribution function of a Gaussian distribution with mean M · NOPC(θ) and standard deviation√

M · σOPC.
Equation (21) is similar to Eq. (19) but written explicitly using the cumulative distribution

function (CDF) notation. Like the OPA receiver, we can calculate the optimum Nth by equating
the two terms of Eq. (21). From Fig. 5(a), we see that the OPC receiver’s performance in terms
of error probability in discriminating BPSK symbols is better than that of the OPA receiver.
However, for a low number of modes M, OPA receivers with non-equal priors still perform better
than OPC receivers with equal priors and perform similarly to OPC receivers with non-equal
priors. Our evaluation suggests that lower-complexity receivers like OPA receivers with fewer
optical components can provide superior information retrieval with a suitable choice of prior.

The error probability of a 2x2 optical hybrid can be calculated using a formula similar to the
one in Eq. (21) with means and variances from Eqs. (16) and (18), respectively. From the error
probability plot in Fig. 5(a), we see that the 2x2 optical hybrid offers a roughly 10% improvement
in BPSK state discrimination compared to the OPC receiver.

4.2. Mutual information calculation

The Holevo capacity [1,2] quantifies the maximum amount of information, in bits per channel
use, that can be sent over a quantum channel when the use of entangled states at the input and
arbitrary measurements at the output are permitted. In the situation under consideration in this
work, the Holevo capacity evaluates to Eq. (22)

C = g(ηNs + NB) − g(NB) (22)

where
g(n) = (n + 1) log2(n + 1) − n log2(n) (23)

is the entropy of the thermal state with mean photon number n. To write the mutual information
and, in turn, the capacity for entanglement-assisted classical communication that requires symbol-
by-symbol joint detection, we are required to calculate the conditional probability distribution.
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Fig. 5. Top: Symbol-by-symbol (separable) minimum error-probability measurement on
each return-idler mode pair at the idler output port. We find that unequal priors have a lower
error probability as compared to BPSK symbols with equal prior. Bottom: Symbol-by-
symbol (separable) minimum error-probability measurement on each return-idler mode pair
at the return output port of the OPA receiver. As compared to measurement made at the
idler output port of the OPA receiver, the error probability is higher at the return output port
of the OPA receiver.
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Fig. 6. Optimal threshold for hypothesis testing at the output port of OPA as a function of
the number of modes. A higher threshold is required when detection is made at the return
output port (red line) compared to the detection made at the idler output port of the OPA
receiver (blue line). Unequal prior were p0 = 0.45, p1 = 0.55. Plot was generated using
Ns = 0.01, NB = 1, η = 0.01.

Assuming that the random variable X denotes the transmitted symbols and Y denotes the detected
symbols, we calculate the mutual information as follows: we first calculate the conditional
probabilities to complete the transition matrix. Using the conditional probabilities, we can
calculate the posteriors, which are then used to calculate the conditional entropies, followed by
the calculation of the mutual information. The steps to calculate the mutual information are
provided in Eq. (32) in Appendix 9.

The Shannon’s capacity for transmitting classical information with our EA receivers can be
calculated by taking the maximum of mutual information over prior p and threshold mean photon
number Nth, i.e.

CEA = max
p,Nth

I(X; Y) (24)

We find that symbols with equal priors maximize the mutual information, as expected. We
conducted a simulation study with a varying number of modes M to optimize the mutual
information as a function of the signal mean photon number transmitted over a noisy Bosonic
channel with NB = 1 and transmittivity η = 0.01. In Fig. 8 and Fig. 9, we present a comparison
of the capacities of various receiver designs proposed for the BPSK constellation using Eq. (24).
At the same time, we also plot the capacity of the Homodyne receiver, where the average number
of photons received is 4ηNs and the average number of noisy photons is 2NB + 1. The capacity
of a Homodyne receiver is given by CH = 0.5 log2[1 + 4ηNs/(2NB + 1)] [27,28]. As a reference,
we also plot the Holevo capacity, given by Eq. (22). Note that the Holevo capacity requires
coherent states with Gaussian modulation. For EA communication with the BPSK constellation,
we find that joint receivers based on OPA and OH proposed in this paper outperform the Holevo
capacity, even for a single mode, as shown in Fig. 8. We also conducted simulation studies for
a large number of modes. From our analysis and results, shown in Fig. 9, we conclude that
for the proposed EA receiver design employing a joint-detection scheme, a large number of
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Fig. 7. (a) Surface plot of PE as a function of prior p0 and threshold mean photon number
Nth from Eq. (19) for photodetection at idler output port for OPA receiver. (b)-(d) 2D view of
the surface plot from a different direction. Colormap denotes error probability – darker color
means lower error probability. The plot was generated using Ns = 0.01, NB = 1, η = 0.01.
These plots reveal that for a fixed threshold, error probability is maximum at equal prior
while non-equal probable symbol seems to reduce error probability.

signal-idler modes is not required. For M = 1, the OPA receiver’s performance is better than
the OPC receiver and 2x2 optical hybrid receiver. C-band operates at 35nm, hence dλ = 35nm.
The central wavelength, λ = 1550nm. The typical observation interval of symbols is 1µs. Phase
matching bandwidth of the C-band is calculated as

B =
c
λ2dλ =

3 × 108

(1550 × 10−9)2
· 35 × 10−9 = 4.3704 × 1012 (25)

Then the number of bosonic mode, M for C-band is 4.3704× 1012 · 1µs = 4.3704× 106. Hence
if we were to use the number of modes in the order of 106, we would end up using C-band as
was demonstrated in [4,7]. However, as we have shown above, achieving a superior performance
requires as little as M = 1 if we choose optimal values of prior and threshold mean photon.

We also compared our capacities with ultimate bound, i.e., entanglement-assisted classical
capacity Cultimate as described in [3,29]. To calculate the Cultimate, we adopted Eq. (26) from [3,29]
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Fig. 8. Channel Capacity for BPSK state discrimination using different receiver schemes for
single mode. We see that even for a single mode, entanglement assistance offers an advantage
in terms of increasing the capacity of the channel and beats the classical capacities such as
Holevo capacity and Homodyne Capacity. The plot was generated using NB = 1, η = 0.01.
The red line curve denotes the theoretical ultimate capacity that can be achieved through
the entanglement-assistance. Right plot zoomed-in to clearly illustrate that Holevo and
Homodyne capacity are not exactly the same.
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Fig. 9. Channel Capacity for BPSK state discrimination using different receiver schemes.
We see that entanglement assistance offers an advantage in terms of increasing the capacity
of the channel. We chose the transmittivity of the Bosonic channel as η = 0.01 and the mean
background photon as NB = 1.0. In our numerical study, classical capacity stays below 0.07
bits per channel use for mean signal photon Ns<1.0.
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with suitable modifications as per the use case described in Section 3. Entanglement-assisted
classical capacity is given by

Cultimate = g(Ns) + g(NR) −

(︃
g(ν+−1

2 ) + g(ν−−1
2 )

)︃
(26)

with a = 2Ns + 1, b = 2NR + 1, Cη = 2
√︁
ηNs(Ns + 1), ν± =

[︃√︂
(a + b)2 − 4C2

η ± (b − a)
]︃
/2, and

g() has been defined in Eq. (23). From Fig. 8, it is evident that further development in the receiver
design is required to achieve performance closer to the ultimate bound of the capacity given by
Eq. (26).

For a large number of modes, the 2x2 optical hybrid receiver performs better in terms of
capacity as shown in Fig. 9. Previous work [27,28] in this direction have not considered the use
of OH receivers. An OH receiver uses a balanced detector, similar to OPA to distinguish the
modulation which is more practical and efficient. Further, OH is known to suppress noise as
discussed in [30]. It could be argued that the capacity should be divided by the number of modes
for a scheme using multiple modes. However, in this paper, we are talking about the overall
receiver design’s capacity, rather than bits per mode. In addition, we find that a number of modes
greater than 1 may not be needed to outperform the Holevo capacity, as seen from Fig. 8. Thus,
for a well-designed receiver, repetition coding may not always be useful. This claim is further
corroborated by Fig. 10.
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Fig. 10. Information rate as a function of the number of modes M for OPA and OPC receiver.
It is evident that as we increase the number of modes the R/C for equal and unequal priors
attain the same values. Further, we see better performance in terms of information rate when
the number of modes is low. The plot was generated using Ns = 0.01, NB = 1, η = 0.01.

Additionally, we also plot the per-mode communication rate R, normalized by the Holevo
capacity for classical communication C, in Fig. 10. The communication rate R is given by
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Eq. (27).

R =
1 + Pe log2(Pe) + (1 − Pe) log2(1 − Pe)

M
. (27)

Equation (27) is based on symmetric hypothesis testing. We find that in terms of the normalized
communication rate, the OPA and OPC receivers perform almost three times better in the photon-
starved regime when BPSK symbols with non-equal priors are used, compared to when BPSK
symbols are equally likely. At the same time, the 2x2 optical hybrid receiver for non-equal priors
performs roughly 2.5 times better, compared to BPSK with equal priors in the photon-starved
regime. Furthermore, the 2x2 optical hybrid receiver can outperform an OPA-based receiver by
as much as 30% in terms of information rate. Finally, it’s worth noting that a large number of
modes does not necessarily equate to superior performance.

4.3. Discussion

It is expected that the order of error probability of two receiver designs should be the reverse of
the order of capacity when compared. We find that this is not the case for OPA, OPC, and OH
as evident from Fig. 5 as well as Fig. 8 and Fig. 9. The ordering in the error-probability plot
and capacity plot is only related when mutual information is optimized with respect to the prior
only. However, we optimize mutual information with respect to the prior as well as threshold
mean photon number as shown in Eq. (24). Hence, the usual ordering relationship is no longer
applicable. Further, as the number of modes increases, the probability distribution seen in Eq. (8)
resembles more and more Gaussian. Thus the ordering of capacity is altered as we move from
the number of modes M = 1 to higher modes. Thus, with the higher number of modes, the OH
receiver design has the best performance, followed by OPC and then the OPA receiver. However,
with M = 1, the best performance is obtained by using the OPA receiver, followed by the OH
receiver and then the OPC receiver.

5. Concluding remarks and future works

Entanglement is a unique phenomenon in quantum information science that can be leveraged to
design new types of sensors, allowing computing devices to solve problems that are intractable
for conventional computers. In communication systems, the use of entanglement assistance offers
a unique advantage in terms of providing a better communication rate in low-photon number
regimes. Pre-shared entanglement can be used to surpass the performance of classical capacities
and the Holevo capacity in highly noisy and low-brightness conditions. However, there are
several challenges in terms of the practical realization of entanglement, such as: (i) transmitting
entanglement over long distances is challenging, and (ii) the optimum quantum receiver to achieve
entanglement-assisted channel capacity has not yet been derived. Nevertheless, simulation results
indicate that even when entanglement is not perfect, entanglement-assisted (EA) communication
based on signal-idler pairs outperforms the Holevo capacity and the capacities of classical
channels.

In this paper, we analyze several low-complexity receiver designs employing optical hybrids
and balanced detectors. We demonstrate that for BPSK modulation, a 2x2 optical hybrid-based
joint detection can outperform the OPA and optical phase-conjugation receivers. Numerical
results demonstrate that we do not need a large number of signal-idler modes to outperform the
Holevo and Homodyne capacities.
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Appendix

7. Gaussian approximation to negative binomial photon statistics

Although the photodetection statistics given by OPA receivers in Eqs. (8) are of negative binomial
nature, they can be computationally expensive to calculate for large values of M. By recognizing
that Eq. (19) contains cumulative distributions and approximating them as Gaussian distributions,
we can rewrite the equation as the error function (erf), which is commonly used to write the
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Fig. 11. Top: Capacity error in the case of OPA receiver as a result of approximating
negative binomial photodetection statistics to Gaussian. Bottom: Capacity of OPA receiver
with the number of modes M = 10. We observe that with Gaussian approximation,
we overestimate Shannon’s capacity of the OPA receiver for EA communication while
discriminating against BPSK states.
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cumulative distribution function of a Gaussian distribution:

1
2

(︃
1 + erf

(︃Nth − M · N(0)
√

2
√

Mσ(0)

)︃)︃
= 1 −

1
2

(︃
1 + erf

(︃Nth − M · N(π)
√

2
√

Mσ(π)

)︃)︃
⇒

1
2
+

1
2
erf

(︃Nth − M · N(0)
√

2
√

Mσ(0)

)︃
=

1
2
−

1
2
erf

(︃Nth − M · N(π)
√

2
√

Mσ(π)

)︃
⇒ erf

(︃Nth − M · N(0)
√

2
√

Mσ(0)

)︃
= −erf

(︃Nth − M · N(π)
√

2
√

Mσ(π)

)︃
Considering that erf(−x) = −erf(x)
and equating the arguments of erf

Nth(θ) =
M(σ(π)N(0) + σ(0)N(π))

(σ(π) + σ(0))
.

(28)

However, we should be aware of how we may misinterpret the true performance of receivers
due to approximation.

In Fig. 11, we plot the difference between CGaussian and CNB. CGaussian represents the capacity of
the OPA receiver as discussed in Section 3.1, where the photodetection statistics are approximated
as Gaussian. CNB represents the capacity using the exact negative binomial distribution from
Eq. (8). Our calculations have led us to the following observations: (i) the error of the
approximation increases as the signal mean photon number, Ns, increases; (ii) with the Gaussian
approximation, the capacity of the channel is overestimated compared to its true value; (iii) as
the number of modes increases, the error of the approximation decreases. These observations are
depicted in Fig. 11. Although the Gaussian approximation overestimates the capacity, the error is
of the order of 10−3, which is small compared to the value of the capacity and enables faster
numerical calculations.

8. Derivation of mean photon number for optical parametric amplifier

In this section, we derive in detail, the mean photon number for OPA using Eq. (3.1).

û†û = (
√

Gâ†R+
√

G − 1âI)(
√

GâR +
√

G − 1â†I )

= Gâ†RâR +
√︁

G(G − 1)â†Râ†I+
√︁

G(G − 1)âI âR + (G − 1)âI â†I
= Gâ†RâR + (

√︁
G(G − 1))(â†Râ†I+âI âR) + (G − 1)âI â†I

⟨û†û⟩ = G⟨â†RâR⟩ + (
√︁

G(G − 1))(⟨â†Râ†I ⟩ + ⟨âI âR⟩) + (G − 1)⟨âI â†I ⟩

= GNR +
√︁

G(G − 1)(ejθ + e−jθ )
√︁
ηNs(Ns + 1) + (G − 1)(1 + NI)

As, âR = âR′ejθ , ⟨âR′ âI⟩ =
√︁
ηNs(Ns + 1),

âI â†I=â†I âI + I, (from the commutative property of annihilation and creation operators)
Further, NR = ηNs + NB after passing through a channel

with mean thermal photon numberNB

NI = Ns, As, idler is per-shared

N1(θ) = ⟨û†û⟩ = G(ηNs + NB) + (G − 1)(1 + Ns)

+ 2 cos θ
√︁

G(G − 1)
√︁
ηNs(Ns + 1)

(29)
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Similarly,

v̂†v̂ = (
√

Gâ†I+
√

G − 1âR)(
√

GâI +
√

G − 1â†R)

⟨v̂†v̂⟩ = GNI + 2 cos θ
√︁

G(G − 1)
√︁
ηNs(Ns + 1) + (G − 1)(1 + NR)

N2(θ) = ⟨v̂†v̂⟩ = GNs + (G − 1)(1 + ηNs + NB) + 2 cos θ
√︁

G(G − 1)
√︁
ηNs(Ns + 1)

(30)

9. Mutual information calculation

In this section, at a very high level, we provide a calculation of how mutual information can be
calculated. The values of POPA can be plugged from Eq. (8). We can first write the conditional
probabilities, assuming that the random variable X denotes the transmitted symbols and Y denotes
the detected symbols:

py |x(Y = 0|X = 0) = 1 − POPA(n<Nth |θ = 0; M)

py |x(Y = 1|X = 1) = POPA(n<Nth |θ = π; M)

py |x(Y = 0|X = 1) = 1 − POPA(n<Nth |θ = π; M)

py |x(Y = 1|X = 0) = POPA(n<Nth |θ = 0; M)

py(Y = 0) = p0py |x(Y = 0|X = 0) + p1py |x(Y = 0|X = 1)
py(Y = 1) = p0py |x(Y = 1|X = 0) + p1py |x(Y = 1|X = 1)

(31)

Using conditional probabilities, we can obtain mutual information as follows.

H(Y |X = 0) = −py |x(Y = 0|X = 0) log2(py |x(Y = 0|X = 0))
− py |x(Y = 1|X = 0) log2(py |x(Y = 1|X = 0))

H(Y |X = 1) = −py |x(Y = 0|X = 1) log2(py |x(Y = 0|X = 1))
− py |x(Y = 1|X = 1) log2(py |x(Y = 1|X = 1))

H(Y |X) = p0H(Y |X = 0) + p1H(Y |X = 1)
H(Y) = −py(Y = 0) log2(py(Y = 0))

− py(Y = 1) log2(py(Y = 1))
I(X; Y) = H(Y) − H(Y |X)

(32)

The mutual information can be used to calculate the capacity using Eq. (24).
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